Annie Ample : This Is An Un Official Fan Site Tribute
Annie Ample
Porn Queen Actress Superstar


Annie Ample

Movie Title Year Distributor Notes Rev Formats Best of Big Busty 1986 Big Top Video NonSex DRO Busty Nymphos 1984 Unknown NonSex First Annual XRCO Adult Film Awards 1985 AVC NonSex The Crab Nebula (catalogue designations M1, NGC 1952, Taurus A) is a supernova remnant in the constellation of Taurus. The common name comes from William Parsons, 3rd Earl of Rosse, who observed the object in 1840 using a 36-inch telescope and produced a drawing that looked somewhat like a crab. Corresponding to a bright supernova recorded by Chinese astronomers in 1054, the nebula was observed later by English astronomer John Bevis in 1731. The nebula was the first astronomical object identified corresponding to a historical supernova explosion. At an apparent magnitude of 8.4, comparable to that of Saturn's moon Titan, it is not visible to the naked eye but can be made out using binoculars under favourable conditions. The nebula lies in the Perseus Arm of the Milky Way galaxy, at a distance of about 2.0 kiloparsecs (6,500 ly) from Earth. It has a diameter of 3.4 parsecs (11 ly), corresponding to an apparent diameter of some 7 arcminutes, and is expanding at a rate of about 1,500 kilometres per second (930 mi/s), or 0.5% of the speed of light.
At the center of the nebula lies the Crab Pulsar, a neutron star 28–30 kilometres (17–19 mi) across with a spin rate of 30.2 times per second, which emits pulses of radiation from gamma rays to radio waves. At X-ray and gamma ray energies above 30 keV, the Crab Nebula is generally the brightest persistent gamma-ray source in the sky, with measured flux extending to above 10 TeV. The nebula's radiation allows detailed study of celestial bodies that occult it. In the 1950s and 1960s, the Sun's corona was mapped from observations of the Crab Nebula's radio waves passing through it, and in 2003, the thickness of the atmosphere of Saturn's moon Titan was measured as it blocked out X-rays from the nebula. Contents 1 Observational history 1.1 First identification 1.2 Connection to SN 1054 1.3 Crab Pulsar 1.4 Source of ultra-high-energy cosmic rays 2 Physical parameters 2.1 Distance 2.2 Mass 2.3 Helium-rich torus 3 Central star 4 Progenitor star 5 Transits by Solar System bodies 5.1 Lunar 5.2 Solar 5.3 Other objects 6 Gallery 7 See also 8 Notes 9 References 10 External links Observational history



HaRGB image of the Crab Nebula from the Liverpool Telescope, exposures totalling 1.4 hours. Further information: SN 1054 Modern understanding that the Crab Nebula was created by a supernova traces back to 1921, when Carl Otto Lampland announced he had seen changes in the nebula's structure.[d][5] This eventually led to the conclusion that the creation of the Crab Nebula corresponds to the bright SN 1054 supernova recorded by ancient astronomers in AD 1054.[6] First identification The Crab Nebula was first identified in 1731 by John Bevis.[7] The nebula was independently rediscovered in 1758 by Charles Messier as he was observing a bright comet.[7] Messier catalogued it as the first entry in his catalogue of comet-like objects;[7] in 1757, Alexis Clairaut reexamined the calculations of Edmund Halley and predicted the return of Halley's Comet in late 1758. The exact time of the comet's return required the consideration of perturbations to its orbit caused by planets in the Solar System such as Jupiter, which Clairaut and his two colleagues Jérôme Lalande and Nicole-Reine Lepaute carried out more precisely than Halley, finding that the comet should appear in the constellation of Taurus. It was in searching in vain for the comet that Charles Messier found the Crab Nebula, which he at first thought to be Halley's comet.[8] After some observation, noticing that the object that he was observing was not moving across the sky, Messier concluded that the object was not a comet. Messier then realised the usefulness of compiling a catalogue of celestial objects of a cloudy nature, but fixed in the sky, to avoid incorrectly cataloguing them as comets. This realization led him to compile the "Messier catalogue."[8] Reproduction of the first depiction of the nebula by Lord Rosse (1844) (colour-inverted to appear white-on-black) William Herschel observed the Crab Nebula numerous times between 1783 and 1809, but it is not known whether he was aware of its existence in 1783, or if he discovered it independently of Messier and Bevis. After several observations, he concluded that it was composed of a group of stars.[9] William Parsons, 3rd Earl of Rosse observed the nebula at Birr Castle in 1844 using a 36-inch (0.9 m) telescope, and referred to the object as the "Crab Nebula" because a drawing he made of it looked like a crab. He observed it again later, in 1848, using a 72-inch (1.8 m) telescope and could not confirm the supposed resemblance, but the name stuck nevertheless.[10][11][12] Connection to SN 1054 The nebula is seen in the visible spectrum at 550 nm (green light). In 1913, when Vesto Slipher registered his spectroscopy study of the sky, the Crab Nebula was again one of the first objects to be studied. In the early twentieth century, the analysis of early photographs of the nebula taken several years apart revealed that it was expanding. Tracing the expansion back revealed that the nebula must have become visible on Earth about 900 years before. Historical records revealed that a new star bright enough to be seen in the daytime had been recorded in the same part of the sky by Chinese astronomers in 1054.[9][13] Changes in the cloud, suggesting its small extent, were discovered by Carl Lampland in 1921.[5] That same year, John Charles Duncan demonstrated that the remnant is expanding,[14] while Knut Lundmark noted its proximity to the guest star of 1054.[13][15] In 1928, Edwin Hubble proposed associating the cloud to the star of 1054, an idea which remained controversial until the nature of supernovae was understood, and it was Nicholas Mayall who indicated that the star of 1054 was undoubtedly the supernova whose explosion produced the Crab Nebula. The search for historical supernovae started at that moment: seven other historical sightings have been found by comparing modern observations of supernova remnants with astronomical documents of past centuries. Given its great distance, the daytime "guest star" observed by the Chinese could only have been a supernova—a massive, exploding star, having exhausted its supply of energy from nuclear fusion and collapsed in on itself. After the original connection to the observations made by Chinese astronomers, in 1934 connections were made to a 13th-century Japanese reference to a "guest star" in Meigetsuki.[16][17][18] The event was long considered unrecorded in Islamic astronomy,[19] but in 1978 a reference was found in a 13th-century copy made by Ibn Abi Usaibia of a work by Ibn Butlan, a Nestorian Christian physician active in Baghdad at the time of the supernova.[20][21] Recent analysis of historical records have found that the supernova that created the Crab Nebula probably appeared in April or early May, rising to its maximum brightness of between apparent magnitude -7 and -4.5 (brighter even than Venus' -4.2 and everything in the night sky except the Moon) by July. The supernova was visible to the naked eye for about two years after its first observation.[22] Thanks to the recorded observations of Far Eastern and Middle Eastern astronomers of 1054, the Crab Nebula became the first astronomical object recognized as being connected to a supernova explosion.[9] Crab Pulsar Main article: Crab Pulsar Image combining optical data from Hubble (in red) and X-ray images from Chandra X-ray Observatory (in blue). In the 1960s, because of the prediction and discovery of pulsars, the Crab Nebula again became a major center of interest. It was then that Franco Pacini predicted the existence of the Crab Pulsar for the first time, which would explain the brightness of the cloud. The star was observed shortly afterwards in 1968.[23] The discovery of the Crab pulsar, and the knowledge of its exact age (almost to the day) allows for the verification of basic physical properties of these objects, such as characteristic age and spin-down luminosity, the orders of magnitude involved (notably the strength of the magnetic field), along with various aspects related to the dynamics of the remnant. The role of this supernova to the scientific understanding of supernova remnants was crucial, as no other historical supernova created a pulsar whose precise age is known for certain. The only possible exception to this rule would be SN 1181 whose supposed remnant, 3C 58, is home to a pulsar, but its identification using Chinese observations from 1181 is contested.[24] The inner part of the nebula is a much smaller pulsar wind nebula that appears as a shell surrounding the pulsar. Some sources consider the Crab Nebula to be an example of both a pulsar wind nebula as well as a supernova remnant,[25] while others separate the two phenomena based on the different sources of energy production and behaviour.[4] Source of ultra-high-energy cosmic rays In 2019 the Crab Nebula was observed to emit gamma rays in excess of 100 TeV, making it the first identified source beyond 100 TeV.[26] Physical parameters Hubble image of a small region of the Crab Nebula, showing Rayleigh–Taylor instabilities in its intricate filamentary structure. In visible light, the Crab Nebula consists of a broadly oval-shaped mass of filaments, about 6 arcminutes long and 4 arcminutes wide (by comparison, the full moon is 30 arcminutes across) surrounding a diffuse blue central region. In three dimensions, the nebula is thought to be shaped either like an oblate spheroid (estimated as 1,380 pc/4,500 ly away) or a prolate spheroid (estimated as 2,020 pc/6,600 ly away).[3] The filaments are the remnants of the progenitor star's atmosphere, and consist largely of ionised helium and hydrogen, along with carbon, oxygen, nitrogen, iron, neon and sulfur. The filaments' temperatures are typically between 11,000 and 18,000 K, and their densities are about 1,300 particles per cm3.[27] In 1953, Iosif Shklovsky proposed that the diffuse blue region is predominantly produced by synchrotron radiation, which is radiation given off by the curving motion of electrons in a magnetic field. The radiation corresponded to electrons moving at speeds up to half the speed of light.[28] Three years later the theory was confirmed by observations. In the 1960s it was found that the source of the curved paths of the electrons was the strong magnetic field produced by a neutron star at the centre of the nebula.[29] Distance Even though the Crab Nebula is the focus of much attention among astronomers, its distance remains an open question, owing to uncertainties in every method used to estimate its distance. In 2008, the consensus was that its distance from Earth is 2.0 ± 0.5 kpc (6,500 ± 1,600 ly).[2] Along its longest visible dimension, it thus measures about 4.1 ± 1 pc (13 ± 3 ly) across.[c] The Crab Nebula currently is expanding outward at about 1,500 km/s (930 mi/s).[30] Images taken several years apart reveal the slow expansion of the nebula,[31] and by comparing this angular expansion with its spectroscopically determined expansion velocity, the nebula's distance can be estimated. In 1973, an analysis of many methods used to compute the distance to the nebula had reached a conclusion of about 1.9 kpc (6,300 ly), consistent with the currently cited value.[3] The Crab Pulsar itself was discovered in 1968. Tracing back its expansion (assuming a constant decrease of expansion speed due to the nebula's mass) yielded a date for the creation of the nebula several decades after 1054, implying that its outward velocity has decelerated less than assumed since the supernova explosion.[32] This reduced deceleration is believed to be caused by energy from the pulsar that feeds into the nebula's magnetic field, which expands and forces the nebula's filaments outward.[33][34] Mass Estimates of the total mass of the nebula are important for estimating the mass of the supernova's progenitor star. The amount of matter contained in the Crab Nebula's filaments (ejecta mass of ionized and neutral gas; mostly helium[35]) is estimated to be 4.6±1.8 M?.[36] Helium-rich torus One of the many nebular components (or anomalies) of the Crab Nebula is a helium-rich torus which is visible as an east-west band crossing the pulsar region. The torus composes about 25% of the visible ejecta. However, it is suggested by calculation that about 95% of the torus is helium. As yet, there has been no plausible explanation put forth for the structure of the torus.[37] Central star Main article: Crab Pulsar Slow-motion movie of the Crab Pulsar, taken with OES Single-Photon-Camera. File:The Crab Nebula - A Flickering X-ray Candle.ogv Data from orbiting observatories show unexpected variations in the Crab Nebula's X-ray output, likely tied to the environment around its central neutron star. File:NASA's Fermi Spots 'Superflares' in the Crab Nebula.ogv NASA's Fermi spots 'superflares' in the Crab Nebula. At the center of the Crab Nebula are two faint stars, one of which is the star responsible for the existence of the nebula. It was identified as such in 1942, when Rudolf Minkowski found that its optical spectrum was extremely unusual.[38] The region around the star was found to be a strong source of radio waves in 1949[39] and X-rays in 1963,[40] and was identified as one of the brightest objects in the sky in gamma rays in 1967.[41] Then, in 1968, the star was found to be emitting its radiation in rapid pulses, becoming one of the first pulsars to be discovered.[21] Pulsars are sources of powerful electromagnetic radiation, emitted in short


nude bikini pics clinton photos chelsea pictures desnuda fotos naked laura porn free porno fan and linda video site lisa kelly playboy topless lolo joan xxx official sex traci ferrari lords eva photo the nue tube pic videos sexy smith ana leah welch lovelace you remini club loren giacomo karen elizabeth carangi fake julia trinity ava kate fenech dana pozzi images gallery edwige moana victoria kristel joanna pornstar foto sylvia rachel pamela principal clips movies lauren shania valerie fabian collins nia rio del robin rhodes hart jane stevens measurements susan taylor jenny sanchez moore lane antonelli lancaume nancy roselyn emily hartley boobs brooke angie kim web demi bonet carrie allen grant hot esther deborah with braga jones fansite yates freeones
lee heather tina inger severance christina louise lopez gina wallpaper nacked ann film nackt fisher carey corinne shue ass vancamp clery model shannon elisabeth panties biografia angelina sofia erin monroe dazza charlene janet doris vanessa anna belinda reguera diane paula fucking scene peeples sonia shauna autopsy monica sharon patricia alicia plato bardot
melissa movie picture cynthia nicole maria star nina julie mary gemser naomi williams torrent nuda barbara twain anderson gia nudes fakes larue pussy actress upskirt san raquel jennifer tits mariah meg sandra big michelle roberts marie lumley tewes clip salma vergara jada cristal day shields cassidy sandrelli penthouse dickinson goldie nud angel brigitte drew fucked amanda shemale olivia website milano ellen ellison vidcaps hayek stone download carmen bessie swimsuit vera zeta locklear shirley anal gray cindy marilyn connie kayla sucking streep cock jensen john tiffani stockings hawn for weaver rue barrymore catherine bellucci rebecca bondage feet applegate jolie sigourney wilkinson nipples juliet revealing teresa magazine kennedy ashley what bio biography agutter wood her jordan hill com jessica pornos blowjob
lesbian nued grace hardcore regera palmer asia theresa leeuw heaton juhi alyssa pinkett rene actriz black vicky jamie ryan gillian massey short shirtless scenes maggie dreyfus lynne mpegs melua george thiessen jean june crawford alex natalie bullock playmate berry andrews maren kleevage quennessen pix hair shelley tiffany gunn galleries from russo dhue lebrock leigh fuck stefania tilton laurie russell vids bessie swimsuit vera zeta shirley locklear anal gray cindy marilyn connie kayla sucking streep cock jensen john tiffani stockings hawn for weaver rue catherine barrymore bellucci rebecca bondage feet applegate jolie george thiessen jean june crawford alex sigourney wilkinson nipples juliet revealing teresa magazine kennedy ashley what bio biography agutter jordan wood her hill com jessica pornos blowjob lesbian nued grace
hardcore regera palmer asia theresa leeuw heaton juhi alyssa pinkett rene actriz black vicky rutherford lohan winslet spungen shawnee swanson newton hannah leslie silverstone did frann wallpapers kidman louis kristy valeria lang fiorentino deanna rita hillary katie granny girls megan tori paris arquette amber sue escort chawla dorothy jessie anthony courtney shot sites kay meryl judy candice desnudo wallace gertz show teen savannah busty schneider glass thong spears young erika aniston stiles capshaw loni imagenes von myspace jena daryl girl hotmail nicola savoy
garr bonnie sexe play adriana donna angelique love actor mitchell unger sellecca adult hairstyles malone teri hayworth lynn harry kara rodriguez films welles peliculas kaprisky uschi blakely halle lindsay miranda jami jamie ryan gillian massey short scenes shirtless maggie dreyfus lynne mpegs melua natalie bullock playmate berry andrews maren kleevage quennessen pix hair shelley tiffany gunn









www.shanagrant.com

Shauna Grant The Last Porn Queen