Candy Estefana : This Is An Un Official Fan Site Tribute
Candy Estefana Estephana, Estafana, Candy, Estefana
Porn Queen Actress Superstar


Candy Estefana

Movie Title Year Distributor Notes Rev Formats 18 and Nasty 20 2001 Devil's Film 1 DRO Alter Ego 2002 Scarlet Tower Facial DRO Barely Legal 10 2000 Hustler Video Pee 3 DRO Bend Over Butts 2 2002 Digital Dreams O Bring 'um Young 4 2001 Anabolic Video Facial 5 DRO Chica Boom 11 2001 Kick Ass Pictures Facial 4 DRO Chillin' Wit The Mack 7 2003 Sean Michaels International LezOnly DO Coed Cocksuckers 22 2000 Zane Entertainment Group BJOnly Facial 1 DO Heavy Metal Teens 2010 Loaded Digital DRO Hi-teen Club 1 2002 Wildlife Facial Bald 2 DRO Hot Showers 3 2002 Hustler Video LezOnly 2 DRO Latin Extreme 1 2002 Jill Kelly Productions 1 DO Latina Mommasitas 2008 Pandemonium Facial Bald DO Legal Latinas 2006 Pandemonium Facial Bald DRO Little Latinas 2004 Maximum Xposure LezOnly DO Mamacitas 1 2002 Video Team LezOnly 2 DRO Naughty College School Girls 22 2002 New Sensations Facial 1 DRO
Real Sex Magazine 41 2001 New Sensations 1 DRO Smokin' 5 2002 Kick Ass Pictures MastOnly 2 DRO Spanish Fly Pussy Search 3 2001 Jake Steed Productions DRO Sticky Side Up 4 2002 West Coast Productions Facial 1 DRO Sweatin' It 1 2002 Kick Ass Pictures Facial Bald 4 DRO Taylor Wane's Slumber Party 2000 Dreamland Video LezOnly Bald 1 DO Teen Spirit 2 2002 Metro Facial 2 DRO Try-a-teen 14 2002 Visual Images Facial 3 DO University Coeds 30 2000 Dane Productions LezOnly 1 DO University Coeds 31 2001 Dane Productions LezOnly 1 DRO Viva Latina Ass 2 2008 DNA Facial Bald DO White Panty Chronicles 19 2001 Rain Productions LezOnly 1 D X-Cheerleaders Gone Fuckin' Nuts 2 2006 Nasty Jack DO XXX Raiders 2001 Relative Young and Tasty 2003 Filmco Releasing O Young Nasty and All Natural 1 2009 Wildlife Facial Bald O Young Sluts, Inc. 3 2001 Hustler Video



The bilinear transform (also known as Tustin's method) is used in digital signal processing and discrete-time control theory to transform continuous-time system representations to discrete-time and vice versa. The bilinear transform is a special case of a conformal mapping (namely, a Möbius transformation), often used to convert a transfer function {\displaystyle H_{a}(s)\ }H_{a}(s)\ of a linear, time-invariant (LTI) filter in the continuous-time domain (often called an analog filter) to a transfer function {\displaystyle H_{d}(z)\ }H_{d}(z)\ of a linear, shift-invariant filter in the discrete-time domain (often called a digital filter although there are analog filters constructed with switched capacitors that are discrete-time filters). It maps positions on the {\displaystyle j\omega \ }j\omega \ axis, {\displaystyle Re[s]=0\ }Re[s]=0\ , in the s-plane to the unit circle, {\displaystyle |z|=1\ }|z|=1\ , in the z-plane. Other bilinear transforms can be used to warp the frequency response of any discrete-time linear system (for example to approximate the non-linear frequency resolution of the human auditory system) and are implementable in the discrete domain by replacing a system's unit delays {\displaystyle \left(z^{-1}\right)\ }\left(z^{{-1}}\right)\ with first order all-pass filters. The transform preserves stability and maps every point of the frequency response of the continuous-time filter, {\displaystyle H_{a}(j\omega _{a})\ }H_{a}(j\omega _{a})\ to a corresponding point in the frequency response of the discrete-time filter, {\displaystyle H_{d}(e^{j\omega _{d}T})\ }H_{d}(e^{{j\omega _{d}T}})\ although to a somewhat different frequency, as shown in the Frequency warping section below. This means that for every feature that one sees in the frequency response of the analog filter, there is a corresponding feature, with identical gain and phase shift, in the frequency response of the digital filter but, perhaps, at a somewhat different frequency. This is barely noticeable at low frequencies but is quite evident at frequencies close to the Nyquist frequency. Contents 1 Discrete-time approximation 2 Stability and minimum-phase property preserved 3 General transformation of a continuous-time IIR filter 4 Example 5 Transformation of a first-order continuous-time filter 6 Transformation of a second-order biquad 7 Frequency warping 8 See also 9 References 10 External links Discrete-time approximation The bilinear transform is a first-order approximation of the natural logarithm function that is an exact mapping of the z-plane to the s-plane. When the Laplace transform is performed on a discrete-time signal (with each element of the discrete-time sequence attached to a correspondingly delayed unit impulse), the result is precisely the Z transform of the discrete-time sequence with the substitution of {\displaystyle {\begin{aligned}z&=e^{sT}\\&={\frac {e^{sT/2}}{e^{-sT/2}}}\\&\approx {\frac {1+sT/2}{1-sT/2}}\end{aligned}}}{\begin{aligned}z&=e^{{sT}}\\&={\frac {e^{{sT/2}}}{e^{{-sT/2}}}}\\&\approx {\frac {1+sT/2}{1-sT/2}}\end{aligned}} where {\displaystyle T\ }T\ is the numerical integration step size of the trapezoidal rule used in the bilinear transform derivation;[1] or, in other words, the sampling period. The above bilinear approximation can be solved for {\displaystyle s\ }s\ or a similar approximation for {\displaystyle s=(1/T)\ln(z)\ \ }s=(1/T)\ln(z)\ \ can be performed. The inverse of this mapping (and its first-order bilinear approximation) is {\displaystyle {\begin{aligned}s&={\frac {1}{T}}\ln(z)\\&={\frac {2}{T}}\left[{\frac {z-1}{z+1}}+{\frac {1}{3}}\left({\frac {z-1}{z+1}}\right)^{3}+{\frac {1}{5}}\left({\frac {z-1}{z+1}}\right)^{5}+{\frac {1}{7}}\left({\frac {z-1}{z+1}}\right)^{7}+\cdots \right]\\&\approx {\frac {2}{T}}{\frac {z-1}{z+1}}\\&={\frac {2}{T}}{\frac {1-z^{-1}}{1+z^{-1}}}\end{aligned}}}{\begin{aligned}s&={\frac {1}{T}}\ln(z)\\&={\frac {2}{T}}\left[{\frac {z-1}{z+1}}+{\frac {1}{3}}\left({\frac {z-1}{z+1}}\right)^{3}+{\frac {1}{5}}\left({\frac {z-1}{z+1}}\right)^{5}+{\frac {1}{7}}\left({\frac {z-1}{z+1}}\right)^{7}+\cdots \right]\\&\approx {\frac {2}{T}}{\frac {z-1}{z+1}}\\&={\frac {2}{T}}{\frac {1-z^{{-1}}}{1+z^{{-1}}}}\end{aligned}} The bilinear transform essentially uses this first order approximation and substitutes into the continuous-time transfer function, {\displaystyle H_{a}(s)\ }H_{a}(s)\ {\displaystyle s\leftarrow {\frac {2}{T}}{\frac {z-1}{z+1}}.}s\leftarrow {\frac {2}{T}}{\frac {z-1}{z+1}}. That is {\displaystyle H_{d}(z)=H_{a}(s){\bigg |}_{s={\frac {2}{T}}{\frac {z-1}{z+1}}}=H_{a}\left({\frac {2}{T}}{\frac {z-1}{z+1}}\right).\ }H_{d}(z)=H_{a}(s){\bigg |}_{{s={\frac {2}{T}}{\frac {z-1}{z+1}}}}=H_{a}\left({\frac {2}{T}}{\frac {z-1}{z+1}}\right).\ Stability and minimum-phase property preserved A continuous-time causal filter is stable if the poles of its transfer function fall in the left half of the complex s-plane. A discrete-time causal filter is stable if the poles of its transfer function fall inside the unit circle in the complex z-plane. The bilinear transform maps the left half of the complex s-plane to the interior of the unit circle in the z-plane. Thus, filters designed in the continuous-time domain that are stable are converted to filters in the discrete-time domain that preserve that stability. Likewise, a continuous-time filter is minimum-phase if the zeros of its transfer function fall in the left half of the complex s-plane. A discrete-time filter is minimum-phase if the zeros of its transfer function fall inside the unit circle in the complex z-plane. Then the same mapping property assures that continuous-time filters that are minimum-phase are converted to discrete-time filters that preserve that property of being minimum-phase. General transformation of a continuous-time IIR filter Consider a continuous-time IIR filter of order {\displaystyle N}N {\displaystyle H_{a}(s)=k\prod _{i=1}^{N}{\frac {s-\xi _{i}}{s-p_{i}}},}{\displaystyle H_{a}(s)=k\prod _{i=1}^{N}{\frac {s-\xi _{i}}{s-p_{i}}},} where {\displaystyle p_{i}}p_{i} and {\displaystyle \xi _{i}}\xi _{i} are the transfer function poles and zeros in the s-plane. Let {\displaystyle K=2/T}{\displaystyle K=2/T} (or if using frequency warping as described below, let {\displaystyle K=\omega _{0}/\tan(\omega _{0}T/2)}{\displaystyle K=\omega _{0}/\tan(\omega _{0}T/2)}). The filter's bilinear transform is obtained by substituting {\displaystyle s=K(z-1)/(z+1)}{\displaystyle s=K(z-1)/(z+1)}: {\displaystyle {\begin{aligned}H_{d}(z)&=H_{a}{\bigl (}K{\tfrac {z-1}{z+1}}{\bigr )}\\&=k\prod _{i=1}^{N}{\frac {K{\frac {z-1}{z+1}}-\xi _{i}}{K{\frac {z-1}{z+1}}-p_{i}}}\\&=k\prod _{i=1}^{N}{\frac {K-\xi _{i}}{K-p_{i}}}\cdot {\frac {z-{\frac {K+\xi _{i}}{K-\xi _{i}}}}{z-{\frac {K+p_{i}}{K-p_{i}}}}}\\&=H_{a}(K)\prod _{i=1}^{N}{\frac {z-\xi _{i}^{d}}{z-p_{i}^{d}}},\end{aligned}}}{\displaystyle {\begin{aligned}H_{d}(z)&=H_{a}{\bigl (}K{\tfrac {z-1}{z+1}}{\bigr )}\\&=k\prod _{i=1}^{N}{\frac {K{\frac {z-1}{z+1}}-\xi _{i}}{K{\frac {z-1}{z+1}}-p_{i}}}\\&=k\prod _{i=1}^{N}{\frac {K-\xi _{i}}{K-p_{i}}}\cdot {\frac {z-{\frac {K+\xi _{i}}{K-\xi _{i}}}}{z-{\frac {K+p_{i}}{K-p_{i}}}}}\\&=H_{a}(K)\prod _{i=1}^{N}{\frac {z-\xi _{i}^{d}}{z-p_{i}^{d}}},\end{aligned}}} where {\displaystyle p_{i}^{d}}{\displaystyle p_{i}^{d}}, {\displaystyle \xi _{i}^{d}}{\displaystyle \xi _{i}^{d}} are the z-plane pole and zero locations of the discretized filter, {\displaystyle p_{i}^{d}={\frac {K+p_{i}}{K-p_{i}}},\quad \xi _{i}^{d}={\frac {K+\xi _{i}}{K-\xi _{i}}}.}{\displaystyle p_{i}^{d}={\frac {K+p_{i}}{K-p_{i}}},\quad \xi _{i}^{d}={\frac {K+\xi _{i}}{K-\xi _{i}}}.} Example As an example take a simple low-pass RC filter. This continuous-time filter has a transfer function {\displaystyle {\begin{aligned}H_{a}(s)&={\frac {1/sC}{R+1/sC}}\\&={\frac {1}{1+RCs}}.\end{aligned}}}{\begin{aligned}H_{a}(s)&={\frac {1/sC}{R+1/sC}}\\&={\frac {1}{1+RCs}}.\end{aligned}} If we wish to implement this filter as a digital filter, we can apply the bilinear transform by substituting for {\displaystyle s}s the formula above; after some reworking, we get the following filter representation: {\displaystyle H_{d}(z)\ }H_{d}(z)\ {\displaystyle =H_{a}\left({\frac {2}{T}}{\frac {z-1}{z+1}}\right)\ }=H_{a}\left({\frac {2}{T}}{\frac {z-1}{z+1}}\right)\ {\displaystyle ={\frac {1}{1+RC\left({\frac {2}{T}}{\frac {z-1}{z+1}}\right)}}\ }={\frac {1}{1+RC\left({\frac {2}{T}}{\frac {z-1}{z+1}}\right)}}\ {\displaystyle ={\frac {1+z}{(1-2RC/T)+(1+2RC/T)z}}\ }={\frac {1+z}{(1-2RC/T)+(1+2RC/T)z}}\ {\displaystyle ={\frac {1+z^{-1}}{(1+2RC/T)+(1-2RC/T)z^{-1}}}.\ }={\frac {1+z^{{-1}}}{(1+2RC/T)+(1-2RC/T)z^{{-1}}}}.\ The coefficients of the denominator are the 'feed-backward' coefficients and the coefficients of the numerator are the 'feed-forward' coefficients used to implement a real-time digital filter. Transformation of a first-order continuous-time filter It is possible to relate the coefficients of a continuous-time, analog filter with those of a similar discrete-time digital filter created through the bilinear transform process. Transforming a general, first-order continuous-time filter with the given transfer function {\displaystyle H_{a}(s)={\frac {b_{0}s+b_{1}}{a_{0}s+a_{1}}}={\frac {b_{0}+b_{1}s^{-1}}{a_{0}+a_{1}s^{-1}}}}{\displaystyle H_{a}(s)={\frac {b_{0}s+b_{1}}{a_{0}s+a_{1}}}={\frac {b_{0}+b_{1}s^{-1}}{a_{0}+a_{1}s^{-1}}}} using the bilinear transform (without prewarping any frequency specification) requires the substitution of {\displaystyle s\leftarrow K{\frac {1-z^{-1}}{1+z^{-1}}}}s\leftarrow K{\frac {1-z^{{-1}}}{1+z^{{-1}}}} where {\displaystyle K\triangleq {\frac {2}{T}}}K\triangleq {\frac {2}{T}}. However, if the frequency warping compensation as described below is used in the bilinear transform, so that both analog and digital filter gain and phase agree at frequency {\displaystyle \omega _{0}}\omega _{0}, then {\displaystyle K\triangleq {\frac {\omega _{0}}{\tan \left({\frac {\omega _{0}T}{2}}\right)}}}{\displaystyle K\triangleq {\frac {\omega _{0}}{\tan \left({\frac {\omega _{0}T}{2}}\right)}}}. This results in a discrete-time digital filter with coefficients expressed in terms of the coefficients of the original continuous time filter: {\displaystyle H_{d}(z)={\frac {(b_{0}K+b_{1})+(-b_{0}K+b_{1})z^{-1}}{(a_{0}K+a_{1})+(-a_{0}K+a_{1})z^{-1}}}}{\displaystyle H_{d}(z)={\frac {(b_{0}K+b_{1})+(-b_{0}K+b_{1})z^{-1}}{(a_{0}K+a_{1})+(-a_{0}K+a_{1})z^{-1}}}} Normally the constant term in the denominator must be normalized to 1 before deriving the corresponding difference equation. This results in {\displaystyle H_{d}(z)={\frac {{\frac {b_{0}K+b_{1}}{a_{0}K+a_{1}}}+{\frac {-b_{0}K+b_{1}}{a_{0}K+a_{1}}}z^{-1}}{1+{\frac {-a_{0}K+a_{1}}{a_{0}K+a_{1}}}z^{-1}}}.}{\displaystyle H_{d}(z)={\frac {{\frac {b_{0}K+b_{1}}{a_{0}K+a_{1}}}+{\frac {-b_{0}K+b_{1}}{a_{0}K+a_{1}}}z^{-1}}{1+{\frac {-a_{0}K+a_{1}}{a_{0}K+a_{1}}}z^{-1}}}.} The difference equation (using the Direct Form I) is {\displaystyle y[n]={\frac {b_{0}K+b_{1}}{a_{0}K+a_{1}}}\cdot x[n]+{\frac {-b_{0}K+b_{1}}{a_{0}K+a_{1}}}\cdot x[n-1]-{\frac {-a_{0}K+a_{1}}{a_{0}K+a_{1}}}\cdot y[n-1]\ .}{\displaystyle y[n]={\frac {b_{0}K+b_{1}}{a_{0}K+a_{1}}}\cdot x[n]+{\frac {-b_{0}K+b_{1}}{a_{0}K+a_{1}}}\cdot x[n-1]-{\frac {-a_{0}K+a_{1}}{a_{0}K+a_{1}}}\cdot y[n-1]\ .} Transformation of a second-order biquad A similar process can be used for a general second-order filter with the given transfer function {\displaystyle H_{a}(s)={\frac {b_{0}s^{2}+b_{1}s+b_{2}}{a_{0}s^{2}+a_{1}s+a_{2}}}={\frac {b_{0}+b_{1}s^{-1}+b_{2}s^{-2}}{a_{0}+a_{1}s^{-1}+a_{2}s^{-2}}}\ .}{\displaystyle H_{a}(s)={\frac {b_{0}s^{2}+b_{1}s+b_{2}}{a_{0}s^{2}+a_{1}s+a_{2}}}={\frac {b_{0}+b_{1}s^{-1}+b_{2}s^{-2}}{a_{0}+a_{1}s^{-1}+a_{2}s^{-2}}}\ .} This results in a discrete-time digital biquad filter with coefficients expressed in terms of the coefficients of the original continuous time filter: {\displaystyle H_{d}(z)={\frac {(b_{0}K^{2}+b_{1}K+b_{2})+(2b_{2}-2b_{0}K^{2})z^{-1}+(b_{0}K^{2}-b_{1}K+b_{2})z^{-2}}{(a_{0}K^{2}+a_{1}K+a_{2})+(2a_{2}-2a_{0}K^{2})z^{-1}+(a_{0}K^{2}-a_{1}K+a_{2})z^{-2}}}}H_{d}(z)={\frac {(b_{0}K^{2}+b_{1}K+b_{2})+(2b_{2}-2b_{0}K^{2})z^{{-1}}+(b_{0}K^{2}-b_{1}K+b_{2})z^{{-2}}}{(a_{0}K^{2}+a_{1}K+a_{2})+(2a_{2}-2a_{0}K^{2})z^{{-1}}+(a_{0}K^{2}-a_{1}K+a_{2})z^{{-2}}}} Again, the constant term in the denominator is generally normalized to 1 before deriving the corresponding difference equation. This results in {\displaystyle H_{d}(z)={\frac {{\frac {b_{0}K^{2}+b_{1}K+b_{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}+{\frac {2b_{2}-2b_{0}K^{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}z^{-1}+{\frac {b_{0}K^{2}-b_{1}K+b_{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}z^{-2}}{1+{\frac {2a_{2}-2a_{0}K^{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}z^{-1}+{\frac {a_{0}K^{2}-a_{1}K+a_{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}z^{-2}}}.}H_{d}(z)={\frac {{\frac {b_{0}K^{2}+b_{1}K+b_{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}+{\frac {2b_{2}-2b_{0}K^{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}z^{{-1}}+{\frac {b_{0}K^{2}-b_{1}K+b_{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}z^{{-2}}}{1+{\frac {2a_{2}-2a_{0}K^{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}z^{{-1}}+{\frac {a_{0}K^{2}-a_{1}K+a_{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}z^{{-2}}}}. The difference equation (using the Direct form I) is {\displaystyle y[n]={\frac {b_{0}K^{2}+b_{1}K+b_{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}\cdot x[n]+{\frac {2b_{2}-2b_{0}K^{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}\cdot x[n-1]+{\frac {b_{0}K^{2}-b_{1}K+b_{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}\cdot x[n-2]-{\frac {2a_{2}-2a_{0}K^{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}\cdot y[n-1]-{\frac {a_{0}K^{2}-a_{1}K+a_{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}\cdot y[n-2]\ .}{\displaystyle y[n]={\frac {b_{0}K^{2}+b_{1}K+b_{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}\cdot x[n]+{\frac {2b_{2}-2b_{0}K^{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}\cdot x[n-1]+{\frac {b_{0}K^{2}-b_{1}K+b_{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}\cdot x[n-2]-{\frac {2a_{2}-2a_{0}K^{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}\cdot y[n-1]-{\frac {a_{0}K^{2}-a_{1}K+a_{2}}{a_{0}K^{2}+a_{1}K+a_{2}}}\cdot y[n-2]\ .} Frequency warping To determine the frequency response of a continuous-time filter, the transfer function {\displaystyle H_{a}(s)}{\displaystyle H_{a}(s)} is evaluated at {\displaystyle s=j\omega _{a}}{\displaystyle s=j\omega _{a}} which is on the {\displaystyle j\omega }{\displaystyle j\omega } axis. Likewise, to determine the frequency response of a discrete-time filter, the transfer function {\displaystyle H_{d}(z)}{\displaystyle H_{d}(z)} is evaluated at {\displaystyle z=e^{j\omega _{d}T}}{\displaystyle z=e^{j\omega _{d}T}} which is on the unit circle, {\displaystyle |z|=1}{\displaystyle |z|=1}. The bilinear transform maps the {\displaystyle j\omega }{\displaystyle j\omega } axis of the s-plane (of which is the domain of {\displaystyle H_{a}(s)}{\displaystyle H_{a}(s)}) to the unit circle of the z-plane, {\displaystyle |z|=1}{\displaystyle |z|=1} (which is the domain of {\displaystyle H_{d}(z)}{\displaystyle H_{d}(z)}), but it is not the same mapping {\displaystyle z=e^{sT}}{\displaystyle z=e^{sT}} which also maps the {\displaystyle j\omega }{\displaystyle j\omega } axis to the unit circle. When the actual frequency of {\displaystyle \omega _{d}}{\displaystyle \omega _{d}} is input to the discrete-time filter designed by use of the bilinear transform, then it is desired to know at what frequency, {\displaystyle \omega _{a}}{\displaystyle \omega _{a}}, for the continuous-time filter that this {\displaystyle \omega _{d}}{\displaystyle \omega _{d}} is mapped to. {\displaystyle H_{d}(z)=H_{a}\left({\frac {2}{T}}{\frac {z-1}{z+1}}\right)}{\displaystyle H_{d}(z)=H_{a}\left({\frac {2}{T}}{\frac {z-1}{z+1}}\right)} {\displaystyle H_{d}(e^{j\omega _{d}T})}{\displaystyle H_{d}(e^{j\omega _{d}T})} {\displaystyle =H_{a}\left({\frac {2}{T}}{\frac {e^{j\omega _{d}T}-1}{e^{j\omega _{d}T}+1}}\right)}{\displaystyle =H_{a}\left({\frac {2}{T}}{\frac {e^{j\omega _{d}T}-1}{e^{j\omega _{d}T}+1}}\right)} {\displaystyle =H_{a}\left({\frac {2}{T}}\cdot {\frac {e^{j\omega _{d}T/2}\left(e^{j\omega _{d}T/2}-e^{-j\omega _{d}T/2}\right)}{e^{j\omega _{d}T/2}\left(e^{j\omega _{d}T/2}+e^{-j\omega _{d}T/2}\right)}}\right)}{\displaystyle =H_{a}\left({\frac {2}{T}}\cdot {\frac {e^{j\omega _{d}T/2}\left(e^{j\omega _{d}T/2}-e^{-j\omega _{d}T/2}\right)}{e^{j\omega _{d}T/2}\left(e^{j\omega _{d}T/2}+e^{-j\omega _{d}T/2}\right)}}\right)} {\displaystyle =H_{a}\left({\frac {2}{T}}\cdot {\frac {\left(e^{j\omega _{d}T/2}-e^{-j\omega _{d}T/2}\right)}{\left(e^{j\omega _{d}T/2}+e^{-j\omega _{d}T/2}\right)}}\right)}{\displaystyle =H_{a}\left({\frac {2}{T}}\cdot {\frac {\left(e^{j\omega _{d}T/2}-e^{-j\omega _{d}T/2}\right)}{\left(e^{j\omega _{d}T/2}+e^{-j\omega _{d}T/2}\right)}}\right)}


nude bikini pics clinton photos chelsea pictures desnuda fotos naked laura porn free porno fan and linda video site lisa kelly playboy topless lolo joan xxx official sex traci ferrari lords eva photo the nue tube pic videos sexy smith ana leah welch lovelace you remini club loren giacomo karen elizabeth carangi fake julia trinity ava kate fenech dana pozzi images gallery edwige moana victoria kristel joanna pornstar foto sylvia rachel pamela principal clips movies lauren shania valerie fabian collins nia rio del robin rhodes hart jane stevens measurements susan taylor jenny sanchez moore lane antonelli lancaume nancy roselyn emily hartley boobs brooke angie kim web demi bonet carrie allen grant hot esther deborah with braga jones fansite yates freeones
lee heather tina inger severance christina louise lopez gina wallpaper nacked ann film nackt fisher carey corinne shue ass vancamp clery model shannon elisabeth panties biografia angelina sofia erin monroe dazza charlene janet doris vanessa anna belinda reguera diane paula fucking scene peeples sonia shauna autopsy monica sharon patricia alicia plato bardot
melissa movie picture cynthia nicole maria star nina julie mary gemser naomi williams torrent nuda barbara twain anderson gia nudes fakes larue pussy actress upskirt san raquel jennifer tits mariah meg sandra big michelle roberts marie lumley tewes clip salma vergara jada cristal day shields cassidy sandrelli penthouse dickinson goldie nud angel brigitte drew fucked amanda shemale olivia website milano ellen ellison vidcaps hayek stone download carmen bessie swimsuit vera zeta locklear shirley anal gray cindy marilyn connie kayla sucking streep cock jensen john tiffani stockings hawn for weaver rue barrymore catherine bellucci rebecca bondage feet applegate jolie sigourney wilkinson nipples juliet revealing teresa magazine kennedy ashley what bio biography agutter wood her jordan hill com jessica pornos blowjob
lesbian nued grace hardcore regera palmer asia theresa leeuw heaton juhi alyssa pinkett rene actriz black vicky jamie ryan gillian massey short shirtless scenes maggie dreyfus lynne mpegs melua george thiessen jean june crawford alex natalie bullock playmate berry andrews maren kleevage quennessen pix hair shelley tiffany gunn galleries from russo dhue lebrock leigh fuck stefania tilton laurie russell vids bessie swimsuit vera zeta shirley locklear anal gray cindy marilyn connie kayla sucking streep cock jensen john tiffani stockings hawn for weaver rue catherine barrymore bellucci rebecca bondage feet applegate jolie george thiessen jean june crawford alex sigourney wilkinson nipples juliet revealing teresa magazine kennedy ashley what bio biography agutter jordan wood her hill com jessica pornos blowjob lesbian nued grace
hardcore regera palmer asia theresa leeuw heaton juhi alyssa pinkett rene actriz black vicky rutherford lohan winslet spungen shawnee swanson newton hannah leslie silverstone did frann wallpapers kidman louis kristy valeria lang fiorentino deanna rita hillary katie granny girls megan tori paris arquette amber sue escort chawla dorothy jessie anthony courtney shot sites kay meryl judy candice desnudo wallace gertz show teen savannah busty schneider glass thong spears young erika aniston stiles capshaw loni imagenes von myspace jena daryl girl hotmail nicola savoy
garr bonnie sexe play adriana donna angelique love actor mitchell unger sellecca adult hairstyles malone teri hayworth lynn harry kara rodriguez films welles peliculas kaprisky uschi blakely halle lindsay miranda jami jamie ryan gillian massey short scenes shirtless maggie dreyfus lynne mpegs melua natalie bullock playmate berry andrews maren kleevage quennessen pix hair shelley tiffany gunn









www.shanagrant.com

Shauna Grant The Last Porn Queen