Kenzie Kyle |
Movie Title Year Distributor Notes Rev Formats Bad Girls 1 2008 Colossal Entertainment LezOnly DRO Big Tit Brotha Lovers 9 2007 Exquisite Facial 1 DRO Big Titty Teens 2 2010 Exquisite DRO Busty College Coeds POV 4 2007 New Sensations Facial Bald Swallow 2 DRO Couples Seduce Teens 24 2012 Pink Visual 1 DRO Facial Makeovers 2007 West Coast Productions BJOnly Facial DRO Fuck for Dollars 7 2008 New Sensations Facial Bald Swallow DVDOnly 1 DRO Goo Girls 27 2007 Rodnievision Facial 1 DRO Hairy Pussy POV 2 2010 Voodoo House Facial Swallow 1 DRO Holy Fuck It's Huge 2 2007 Candy Shop Facial 1 DRO I Film Myself 5 2007 New Sensations MastOnly 1 DRO I Fuck on the First Date 2012 Vouyer Media DRO Jack In Juveniles 2012 Vouyer Media DRO Lesbian Bait 2 2013 Filmco Releasing LezOnly DRO Spread 'Em 2013 Vouyer Media DO SWAT 1 2007 Vouyer Media Facial Swallow 6 DRO When Girls Play 2 2007 Abigail Productions LezOnly DRO White Chicks Licking Black Crack 4 2007 JM Productions DRO Young Mommies Who Love Pussy 2008 Rapture Entertainment LezOnly Matrix Lie groups Let {\displaystyle \operatorname {GL} (n,\mathbb {C} )}\operatorname {GL}(n,{\mathbb {C}}) denote the group of {\displaystyle n\times n}n\times n invertible matrices with entries in {\displaystyle \mathbb {C} }\mathbb {C} . Any closed subgroup of {\displaystyle \operatorname {GL} (n,\mathbb {C} )}\operatorname {GL}(n,{\mathbb {C}}) is a Lie group;[2] Lie groups of this sort are called matrix Lie groups. Since most of the interesting examples of Lie groups can be realized as matrix Lie groups, some textbooks restrict attention to this class, including those of Hall[3] and Rossmann.[4] Restricting attention to matrix Lie groups simplifies the definition of the Lie algebra and the exponential map. The following are standard examples of matrix Lie groups. The special linear groups over {\displaystyle \mathbb {R} }\mathbb {R} and {\displaystyle \mathbb {C} }\mathbb {C} , {\displaystyle \operatorname {SL} (n,\mathbb {R} )}{\displaystyle \operatorname {SL} (n,\mathbb {R} )} and {\displaystyle \operatorname {SL} (n,\mathbb {C} )}{\displaystyle \operatorname {SL} (n,\mathbb {C} )}, consisting of {\displaystyle n\times n}n\times n matrices with determinant one and entries in {\displaystyle \mathbb {R} }\mathbb {R} or {\displaystyle \mathbb {C} }\mathbb {C} The unitary groups and special unitary groups, {\displaystyle {\text{U}}(n)}{\displaystyle {\text{U}}(n)} and {\displaystyle {\text{SU}}(n)}{\displaystyle {\text{SU}}(n)}, consisting of {\displaystyle n\times n}n\times n complex matrices satisfying {\displaystyle U^{*}=U^{-1}}{\displaystyle U^{*}=U^{-1}} (and also {\displaystyle \det(U)=1}{\displaystyle \det(U)=1} in the case of {\displaystyle {\text{SU}}(n)}{\displaystyle {\text{SU}}(n)}) The orthogonal groups and special orthogonal groups, {\displaystyle {\text{O}}(n)}{\displaystyle {\text{O}}(n)} and {\displaystyle {\text{SO}}(n)}{\displaystyle {\text{SO}}(n)}, consisting of {\displaystyle n\times n}n\times n real matrices satisfying {\displaystyle R^{\mathrm {T} }=R^{-1}}{\displaystyle R^{\mathrm {T} }=R^{-1}} (and also {\displaystyle \det(R)=1}\det(R)=1 in the case of {\displaystyle {\text{SO}}(n)}{\displaystyle {\text{SO}}(n)}) All of the preceding examples fall under the heading of the classical groups.
|
www.shanagrant.com
Shauna Grant The Last Porn Queen |
|
|
|
|
|