paula styles : This Is An Un Official Fan Site Tribute
paula styles
Porn Queen Actress Superstar


paula styles

The Manhattan Project was a research and development undertaking during World War II that produced the first nuclear weapons. It was led by the United States with the support of the United Kingdom and Canada. From 1942 to 1946, the project was under the direction of Major General Leslie Groves of the U.S. Army Corps of Engineers. Nuclear physicist Robert Oppenheimer was the director of the Los Alamos Laboratory that designed the actual bombs. The Army component of the project was designated the Manhattan District; Manhattan gradually superseded the official codename, Development of Substitute Materials, for the entire project. Along the way, the project absorbed its earlier British counterpart, Tube Alloys. The Manhattan Project began modestly in 1939, but grew to employ more than 130,000 people and cost nearly US$2 billion (about $28 billion today[1]). Over 90% of the cost was for building factories and to produce
with less than 10% for development and production of the weapons. Research and production took place at more than 30 sites across the United States, the United Kingdom, and Canada. Two types of atomic bombs were developed concurrently during the war: a relatively simple gun-type fission weapon and a more complex implosion-type nuclear weapon. The Thin Man gun-type design proved impractical to use with plutonium, and therefore a simpler gun-type called Little Boy was developed that used uranium-235, an isotope that makes up only 0.7 percent of natural uranium. Chemically identical to the most common isotope, uranium-238, and with almost the same mass, it proved difficult to separate the two. Three methods were employed for uranium enrichment: electromagnetic, gaseous and thermal. Most of this work was performed at the Clinton Engineer Works at Oak Ridge, Tennessee. In parallel with the work on uranium was an effort to produce plutonium, which was discovered at the University of California in 1940.[2] After the feasibility of the world's first artificial nuclear reactor, the Chicago Pile-1, was demonstrated in 1942 at the Metallurgical Laboratory in the University of Chicago, the Project designed the X-10 Graphite Reactor at Oak Ridge and the production reactors at the Hanford Site in Washington state, in which uranium was irradiated



and transmuted into plutonium. The plutonium was then chemically separated from the uranium, using the bismuth phosphate process. The Fat Man plutonium implosion-type weapon was developed in a concerted design and development effort by the Los Alamos Laboratory. The project was also charged with gathering intelligence on the German nuclear weapon project. Through Operation Alsos, Manhattan Project personnel served in Europe, sometimes behind enemy lines, where they gathered nuclear materials and documents, and rounded up German scientists. Despite the Manhattan Project's tight security, Soviet atomic spies successfully penetrated the program. The first nuclear device ever detonated was an implosion-type bomb at the Trinity test, conducted at New Mexico's Alamogordo Bombing and Gunnery Range on 16 July 1945. Little Boy and Fat Man bombs were used a month later in the atomic bombings of Hiroshima and Nagasaki, respectively. In the immediate postwar years, the Manhattan Project conducted weapons testing at Bikini Atoll as part of Operation Crossroads, developed new weapons, promoted the development of the network of national laboratories, supported medical research into radiology and laid the foundations for the nuclear navy. It maintained control over American atomic weapons research and production until the formation of the United States Atomic Energy Commission in January 1947. Contents 1 Origins and timeline 2 Feasibility 2.1 Proposals 2.2 Bomb design concepts 3 Organization 3.1 Manhattan District 3.2 Military Policy Committee 3.3 Collaboration with the United Kingdom 4 Project sites 4.1 Oak Ridge 4.2 Los Alamos 4.3 Chicago 4.4 Hanford 4.5 Canadian sites 4.5.1 British Columbia 4.5.2 Ontario 4.5.3 Northwest Territories 4.6 Heavy water sites 5 Uranium 5.1 Ore 5.2 Isotope separation 5.2.1 Centrifuges 5.2.2 Electromagnetic separation 5.2.3 Gaseous diffusion 5.2.4 Thermal diffusion 5.3 Aggregate U-235 production 6 Plutonium 6.1 X-10 Graphite Reactor 6.2 Hanford reactors 6.3 Separation process 6.4 Weapon design 6.5 Trinity 7 Personnel 8 Secrecy 8.1 Censorship 8.2 Soviet spies 9 Foreign intelligence 10 Atomic bombings of Hiroshima and Nagasaki 10.1 Preparations 10.2 Bombings 11 After the war 12 Cost 13 Legacy 14 Notes 15 References 15.1 General, administrative, and diplomatic histories 15.2 Technical histories 15.3 Participant accounts 16 External links Origins and timeline See also: Timeline of the Manhattan Project The discovery of nuclear fission by German chemists Otto Hahn and Fritz Strassmann in 1938, and its theoretical explanation by Lise Meitner and Otto Frisch, made the development of an atomic bomb a theoretical possibility. There were fears that a German atomic bomb project would develop one first, especially among scientists who were refugees from Nazi Germany and other fascist countries.[3] In August 1939, Hungarian-born physicists Leo Szilard and Eugene Wigner drafted the Einstein–Szilard letter, which warned of the potential development of "extremely powerful bombs of a new type". It urged the United States to take steps to acquire stockpiles of uranium ore and accelerate the research of Enrico Fermi and others into nuclear chain reactions. They had it signed by Albert Einstein and delivered to President Franklin D. Roosevelt. Roosevelt called on Lyman Briggs of the National Bureau of Standards to head the Advisory Committee on Uranium to investigate the issues raised by the letter. Briggs held a meeting on 21 October 1939, which was attended by Szilárd, Wigner and Edward Teller. The committee reported back to Roosevelt in November that uranium "would provide a possible source of bombs with a destructiveness vastly greater than anything now known."[4] The U.S. Navy awarded Columbia University $6,000 in funding, most of which Enrico Fermi and Szilard spent on purchasing graphite. A team of Columbia professors including Fermi, Szilard, Eugene T. Booth and John Dunning created the first nuclear fission reaction in the Americas, verifying the work of Hahn and Strassmann. The same team subsequently built a series of prototype nuclear reactors (or "piles" as Fermi called them) in Pupin Hall at Columbia, but were not yet able to achieve a chain reaction.[5] The Advisory Committee on Uranium became the National Defense Research Committee (NDRC) on Uranium when that organization was formed on 27 June 1940.[6] Briggs proposed spending $167,000 on research into uranium, particularly the uranium-235 isotope, and plutonium, which was discovered in 1940 at the University of California[2][7] On 28 June 1941, Roosevelt signed Executive Order 8807, which created the Office of Scientific Research and Development (OSRD),[8] with Vannevar Bush as its director. The office was empowered to engage in large engineering projects in addition to research.[7] The NDRC Committee on Uranium became the S-1 Section of the OSRD; the word "uranium" was dropped for security reasons.[9] In Britain, Frisch and Rudolf Peierls at the University of Birmingham had made a breakthrough investigating the critical mass of uranium-235 in June 1939.[10] Their calculations indicated that it was within an order of magnitude of 10 kilograms (22 lb), which was small enough to be carried by a bomber of the day.[11] Their March 1940 Frisch–Peierls memorandum initiated the British atomic bomb project and its MAUD Committee,[12] which unanimously recommended pursuing the development of an atomic bomb.[11] In July 1940, Britain had offered to give the United States access to its scientific research,[13] and the Tizard Mission's John Cockcroft briefed American scientists on British developments. He discovered that the American project was smaller than the British, and not as far advanced.[14] As part of the scientific exchange, the MAUD Committee's findings were conveyed to the United States. One of its members, the Australian physicist Mark Oliphant, flew to the United States in late August 1941 and discovered that data provided by the MAUD Committee had not reached key American physicists. Oliphant then set out to find out why the committee's findings were apparently being ignored. He met with the Uranium Committee and visited Berkeley, California, where he spoke persuasively to Ernest O. Lawrence. Lawrence was sufficiently impressed to commence his own research into uranium. He in turn spoke to James B. Conant, Arthur H. Compton and George B. Pegram. Oliphant's mission was therefore a success; key American physicists were now aware of the potential power of an atomic bomb.[15][16] On 9 October 1941, President Roosevelt approved the atomic program after he convened a meeting with Vannevar Bush and Vice President Henry A. Wallace. To control the program, he created a Top Policy Group consisting of himself—although he never attended a meeting—Wallace, Bush, Conant, Secretary of War Henry L. Stimson, and the Chief of Staff of the Army, General George C. Marshall. Roosevelt chose the Army to run the project rather than the Navy, because the Army had more experience with management of large-scale construction projects. He also agreed to coordinate the effort with that of the British, and on 11 October he sent a message to Prime Minister Winston Churchill, suggesting that they correspond on atomic matters.[17] Feasibility Proposals Six men in suits sitting on chairs, smiling and laughing March 1940 meeting at Berkeley, California: Ernest O. Lawrence, Arthur H. Compton, Vannevar Bush, James B. Conant, Karl T. Compton, and Alfred L. Loomis The S-1 Committee held its meeting on 18 December 1941 "pervaded by an atmosphere of enthusiasm and urgency"[18] in the wake of the attack on Pearl Harbor and the subsequent United States declaration of war upon Japan and then on Germany.[19] Work was proceeding on three different techniques for isotope separation to separate uranium-235 from the more abundant uranium-238. Lawrence and his team at the University of California,[2] investigated electromagnetic separation, while Eger Murphree and Jesse Wakefield Beams's team looked into gaseous diffusion at Columbia University, and Philip Abelson directed research into thermal diffusion at the Carnegie Institution of Washington and later the Naval Research Laboratory.[20] Murphree was also the head of an unsuccessful separation project using gas centrifuges.[21] Meanwhile, there were two lines of research into nuclear reactor technology, with Harold Urey continuing research into heavy water at Columbia, while Arthur Compton brought the scientists working under his supervision from Columbia, California and Princeton University to join his team at the University of Chicago, where he organized the Metallurgical Laboratory in early 1942 to study plutonium and reactors using graphite as a neutron moderator.[22] Briggs, Compton, Lawrence, Murphree, and Urey met on 23 May 1942 to finalize the S-1 Committee recommendations, which called for all five technologies to be pursued. This was approved by Bush, Conant, and Brigadier General Wilhelm D. Styer, the chief of staff of Major General Brehon B. Somervell's Services of Supply, who had been designated the Army's representative on nuclear matters.[20] Bush and Conant then took the recommendation to the Top Policy Group with a budget proposal for $54 million for construction by the United States Army Corps of Engineers, $31 million for research and development by OSRD and $5 million for contingencies in fiscal year 1943. The Top Policy Group in turn sent it on 17 June 1942 to the President, who approved it by writing "OK FDR" on the document.[20] Bomb design concepts A series of doodles Different fission bomb assembly methods explored during the July 1942 conference Compton asked theoretical physicist J. Robert Oppenheimer of the University of California[2] to take over research into fast neutron calculations—the key to calculations of critical mass and weapon detonation—from Gregory Breit, who had quit on 18 May 1942 because of concerns over lax operational security.[23] John H. Manley, a physicist at the Metallurgical Laboratory, was assigned to assist Oppenheimer by contacting and coordinating experimental physics groups scattered across the country.[24] Oppenheimer and Robert Serber of the University of Illinois examined the problems of neutron diffusion—how neutrons moved in a nuclear chain reaction—and hydrodynamics—how the explosion produced by a chain reaction might behave. To review this work and the general theory of fission reactions, Oppenheimer and Fermi convened meetings at the University of Chicago in June and at the University of California in July 1942 with theoretical physicists Hans Bethe, John Van Vleck, Edward Teller, Emil Konopinski, Robert Serber, Stan Frankel, and Eldred C. Nelson, the latter three former students of Oppenheimer, and experimental physicists Emilio Segrè, Felix Bloch, Franco Rasetti, John Henry Manley, and Edwin McMillan. They tentatively confirmed that a fission bomb was theoretically possible.[25] There were still many unknown factors. The properties of pure uranium-235 were relatively unknown, as were those of plutonium, an element that had only been discovered in February 1941 by Glenn Seaborg and his team. The scientists at the (July 1942) Berkeley conference envisioned creating plutonium in nuclear reactors where uranium-238 atoms absorbed neutrons that had been emitted from fissioning uranium-235 atoms. At this point no reactor had been built, and only tiny quantities of plutonium were available from cyclotrons at institutions such as Washington University in St. Louis.[26] Even by December 1943, only two milligrams had been produced.[27] There were many ways of arranging the fissile material into a critical mass. The simplest was shooting a "cylindrical plug" into a sphere of "active material" with a "tamper"—dense material that would focus neutrons inward and keep the reacting mass together to increase its efficiency.[28] They also explored designs involving spheroids, a primitive form of "implosion" suggested by Richard C. Tolman, and the possibility of autocatalytic methods, which would increase the efficiency of the bomb as it exploded.[29] Considering the idea of the fission bomb theoretically settled—at least until more experimental data was available—the 1942 Berkeley conference then turned in a different direction. Edward Teller pushed for discussion of a more powerful bomb: the "super", now usually referred to as a "hydrogen bomb", which would use the explosive force of a detonating fission bomb to ignite a nuclear fusion reaction in deuterium and tritium.[30] Teller proposed scheme after scheme, but Bethe refused each one. The fusion idea was put aside to concentrate on producing fission bombs.[31] Teller also raised the speculative possibility that an atomic bomb might "ignite" the atmosphere because of a hypothetical fusion reaction of nitrogen nuclei.[note 1] Bethe calculated that it could not happen,[33] and a report co-authored by Teller showed that "no self-propagating chain of nuclear reactions is likely to be started."[34] In Serber's account, Oppenheimer mentioned the possibility of this scenario to Arthur Compton, who "didn't have enough sense to shut up about it. It somehow got into a document that went to Washington" and was "never laid to rest".[note 2] Organization Manhattan District The Chief of Engineers, Major General Eugene Reybold, selected Colonel James C. Marshall to head the Army's part of the project in June 1942. Marshall created a liaison office in Washington, D.C., but established his temporary headquarters on the 18th floor of 270 Broadway in New York, where he could draw on administrative support from the Corps of Engineers' North Atlantic Division. It was close to the Manhattan office of Stone & Webster, the principal project contractor, and to Columbia University. He had permission to draw on his former command, the Syracuse District, for staff, and he started with Lieutenant Colonel Kenneth Nichols, who became his deputy.[36][37] Organization chart of the project, showing project headquarters divisions at the top, Manhattan District in the middle, and field offices at the bottom Manhattan Project Organization Chart, 1 May 1946 Because most of his task involved construction, Marshall worked in cooperation with the head of the Corps of Engineers Construction Division, Major General Thomas M. Robbins, and his deputy, Colonel Leslie Groves. Reybold, Somervell, and Styer decided to call the project "Development of Substitute Materials", but Groves felt that this would draw attention. Since engineer districts normally carried the name of the city where they were located, Marshall and Groves agreed to name the Army's component of the project the Manhattan District. This became official on 13 August, when Reybold issued the order creating the new district. Informally, it was known as the Manhattan Engineer District, or MED. Unlike other districts, it had no geographic boundaries, and Marshall had the authority of a division engineer. Development of Substitute Materials remained as the official codename of the project as a whole, but was supplanted over time by "Manhattan".[37] Marshall later conceded that, "I had never heard of atomic fission but I did know that you could not build much of a plant, much less four of them for $90 million."[38] A single TNT plant that Nichols had recently built in Pennsylvania had cost $128 million.[39] Nor were they impressed with estimates to the nearest order of magnitude, which Groves compared with telling a caterer to prepare for between ten and a thousand guests.[40] A survey team from Stone & Webster had already scouted a site for the production plants. The War Production Board recommended sites around Knoxville, Tennessee, an isolated area where the Tennessee Valley Authority could supply ample electric power and the rivers could provide cooling water for the reactors. After examining several sites, the survey team selected one near Elza, Tennessee. Conant advised that it be acquired at once and Styer agreed but Marshall temporized, awaiting the results of Conant's reactor experiments before taking action.[41] Of the prospective processes, only Lawrence's electromagnetic separation appeared sufficiently advanced for construction to commence.[42] Marshall and Nichols began assembling the resources they would need. The first step was to obtain a high priority rating for the project. The top ratings were AA-1 through AA-4 in descending order, although there was also a special AAA rating reserved for emergencies. Ratings AA-1 and AA-2 were for essential weapons and equipment, so Colonel Lucius D. Clay, the deputy chief of staff at Services and Supply for requirements and resources, felt that the highest rating he could assign was AA-3, although he was willing to provide a AAA rating on request for critical materials if the need arose.[43] Nichols and Marshall were disappointed; AA-3 was the same priority as Nichols' TNT plant in Pennsylvania.[44] Military Policy Committee A man smiling in a suit in suit and one in a uniform chat around a pile of twisted metal. Oppenheimer and Groves at the remains of the Trinity test in September 1945, two months after the test blast and just after the end of World War II. The white overshoes prevented fallout from sticking to the soles of their shoes.[45] Vannevar Bush became dissatisfied with Colonel Marshall's failure to get the project moving forward expeditiously, specifically the failure to acquire the Tennessee site, the low priority allocated to the project by the Army and the location of his headquarters in New York City.[46] Bush felt that more aggressive leadership was required, and spoke to Harvey Bundy and Generals Marshall, Somervell, and Styer about his concerns. He wanted the project placed under a senior policy committee, with a prestigious officer, preferably Styer, as overall director.[44] Somervell and Styer selected Groves for the post, informing him on 17 September of this decision, and that General Marshall ordered that he be promoted to brigadier general,[47] as it was felt that the title "general" would hold more sway with the academic scientists working on the Manhattan Project.[48] Groves' orders placed him directly under Somervell rather than Reybold, with Colonel Marshall now answerable to Groves.[49] Groves established his headquarters in Washington, D.C., on the fifth floor of the New War Department Building, where Colonel Marshall had his liaison office.[50] He assumed command of the Manhattan Project on 23 September 1942. Later that day, he attended a meeting called by Stimson, which established a Military Policy Committee, responsible to the Top Policy Group, consisting of Bush (with Conant as an alternate), Styer and Rear Admiral William R. Purnell.[47] Tolman and Conant were later appointed as Groves' scientific advisers.[51] On 19 September, Groves went to Donald Nelson, the chairman of the War Production Board, and asked for broad authority to issue a AAA rating whenever it was required. Nelson initially balked but quickly caved in when Groves threatened to go to the President.[52] Groves promised not to use the AAA rating unless it was necessary. It soon transpired that for the routine requirements of the project the AAA rating was too high but the AA-3 rating was too low. After a long campaign, Groves finally received AA-1 authority on 1 July 1944.[53] According to Groves, "In Washington you became aware of the importance of top priority. Most everything proposed in the Roosevelt administration would have top priority. That would last for about a week or two and then something else would get top priority".[54] One of Groves' early problems was to find


nude bikini pics clinton photos chelsea pictures desnuda fotos naked laura porn free porno fan and linda video site lisa kelly playboy topless lolo joan xxx official sex traci ferrari lords eva photo the nue tube pic videos sexy smith ana leah welch lovelace you remini club loren giacomo karen elizabeth carangi fake julia trinity ava kate fenech dana pozzi images gallery edwige moana victoria kristel joanna pornstar foto sylvia rachel pamela principal clips movies lauren shania valerie fabian collins nia rio del robin rhodes hart jane stevens measurements susan taylor jenny sanchez moore lane antonelli lancaume nancy roselyn emily hartley boobs brooke angie kim web demi bonet carrie allen grant hot esther deborah with braga jones fansite yates freeones
lee heather tina inger severance christina louise lopez gina wallpaper nacked ann film nackt fisher carey corinne shue ass vancamp clery model shannon elisabeth panties biografia angelina sofia erin monroe dazza charlene janet doris vanessa anna belinda reguera diane paula fucking scene peeples sonia shauna autopsy monica sharon patricia alicia plato bardot
melissa movie picture cynthia nicole maria star nina julie mary gemser naomi williams torrent nuda barbara twain anderson gia nudes fakes larue pussy actress upskirt san raquel jennifer tits mariah meg sandra big michelle roberts marie lumley tewes clip salma vergara jada cristal day shields cassidy sandrelli penthouse dickinson goldie nud angel brigitte drew fucked amanda shemale olivia website milano ellen ellison vidcaps hayek stone download carmen bessie swimsuit vera zeta locklear shirley anal gray cindy marilyn connie kayla sucking streep cock jensen john tiffani stockings hawn for weaver rue barrymore catherine bellucci rebecca bondage feet applegate jolie sigourney wilkinson nipples juliet revealing teresa magazine kennedy ashley what bio biography agutter wood her jordan hill com jessica pornos blowjob
lesbian nued grace hardcore regera palmer asia theresa leeuw heaton juhi alyssa pinkett rene actriz black vicky jamie ryan gillian massey short shirtless scenes maggie dreyfus lynne mpegs melua george thiessen jean june crawford alex natalie bullock playmate berry andrews maren kleevage quennessen pix hair shelley tiffany gunn galleries from russo dhue lebrock leigh fuck stefania tilton laurie russell vids bessie swimsuit vera zeta shirley locklear anal gray cindy marilyn connie kayla sucking streep cock jensen john tiffani stockings hawn for weaver rue catherine barrymore bellucci rebecca bondage feet applegate jolie george thiessen jean june crawford alex sigourney wilkinson nipples juliet revealing teresa magazine kennedy ashley what bio biography agutter jordan wood her hill com jessica pornos blowjob lesbian nued grace
hardcore regera palmer asia theresa leeuw heaton juhi alyssa pinkett rene actriz black vicky rutherford lohan winslet spungen shawnee swanson newton hannah leslie silverstone did frann wallpapers kidman louis kristy valeria lang fiorentino deanna rita hillary katie granny girls megan tori paris arquette amber sue escort chawla dorothy jessie anthony courtney shot sites kay meryl judy candice desnudo wallace gertz show teen savannah busty schneider glass thong spears young erika aniston stiles capshaw loni imagenes von myspace jena daryl girl hotmail nicola savoy
garr bonnie sexe play adriana donna angelique love actor mitchell unger sellecca adult hairstyles malone teri hayworth lynn harry kara rodriguez films welles peliculas kaprisky uschi blakely halle lindsay miranda jami jamie ryan gillian massey short scenes shirtless maggie dreyfus lynne mpegs melua natalie bullock playmate berry andrews maren kleevage quennessen pix hair shelley tiffany gunn









www.shanagrant.com

Shauna Grant The Last Porn Queen